Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications.

نویسنده

  • Karl Walter Bock
چکیده

Human UDP-glucuronosyltransferases (UGTs) are major phase II enzymes in the drug metabolism system. Despite major advances in characterization of UGT gene family members, their role in clearance and homeostasis of endogenous substrates is insufficiently understood. Endobiotic substrates including bilirubin, serotonin, eicosanoids, steroid hormones, bile acids, thyroxine and fat-soluble vitamins A and D are discussed. Species- and tissue/cell-dependent regulation of UGT expression by ligand-activated transcription factors is often involved in endobiotic homeostasis. However, roles of particular UGTs are often difficult to delineate since they function together with other enzymes and transporters. Better knowledge of endobiotic UGT substrates and consequences of their conjugation may help to understand evolutionary conserved UGT functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients

UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC a...

متن کامل

Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family.

UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, in...

متن کامل

Use of cloned and expressed human UDP-glucuronosyltransferases for the assessment of human drug conjugation and identification of potential drug interactions.

Glucuronidation is an important pathway for human drug metabolism. Four cloned and expressed human UDP-glucuronosyltransferases (UGT1A1, UGT1A6, UGT1A9, and UGT2B15) were used to screen a series of three potential drug substrates differing only in position of the phenol moiety. The meta and para phenols, UK-156,037 and UK-157,147, were found to be substrates for UGT1A1 with K(m) values of 256 a...

متن کامل

13-hydroxy- and 13-oxooctadecadienoic acids: novel substrates for human UDP-glucuronosyltransferases.

Although there are numerous studies of glucuronidation of endogenous compounds, information on the glucuronidation of fatty acids is lacking. In the present studies, both linoleic acid (LA) and its biologically active oxidized derivatives, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-oxooctadecadienoic acid (13-OXO), have been shown to be effective substrates for human liver UDP-glucuronosyl...

متن کامل

Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics

The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) significantly influences the bioavailability and biological responses of endogenous molecule substrates and xenobiotics including drugs. UGTs participate in the regulation of cellular homeostasis by limiting stress induced by toxic molecules, and by controlling hormonal signaling networks. Glucuronidation is highl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical pharmacology

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2015